Interaction between the critical aromatic amino acid residues Tyr(352) and Phe(504) in the yeast Gal2 transporter.

نویسندگان

  • T Kasahara
  • M Kasahara
چکیده

Three critical aromatic sites have been identified in the yeast galactose transporter Gal2: Tyr(352) at the extracellular boundary of putative transmembrane segment (TM) 7, Tyr(446) in the middle of TM10 and Phe(504) in the middle of TM12. The relationship between these sites was investigated by random mutagenesis of each combination of two of the three residues. Galactose transport-positive clones selected by plate assays encoded Tyr(446) and specific combinations of aromatic residues at sites 352 and 504. Double-site mutants containing aromatic residues at these latter two positions showed either essentially full galactose transport activity (Phe(352)Trp(504) and Trp(352)Trp(504)) or no significant activity (Phe(352)Tyr(504) and Trp(352)Tyr(504)), whereas single-site mutants showed markedly reduced activity. These results are indicative of a specific interaction between sites 352 and 504 of Gal2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tryptophan 388 in putative transmembrane segment 10 of the rat glucose transporter Glut1 is essential for glucose transport.

The molecular mechanism of substrate recognition in membrane transport is not well understood. Two amino acid residues, Tyr446 and Trp455 in transmembrane segment 10 (TM10), have been shown to be important for galactose recognition by the yeast Gal2 transporter; Tyr446 was found to be essential in that its replacement by any of the other 19 amino acids abolished transport activity (Kasahara, M....

متن کامل

Amino acid residues responsible for galactose recognition in yeast Gal2 transporter.

A novel, systematic approach was used to identify amino acid residues responsible for substrate recognition in the transmembrane 10 region of the Gal2 galactose transporter of Saccharomyces cerevisiae. A mixture of approximately 25,000 distinct plasmids that encode all the combinations of 12 amino acids in transmembrane 10 that are different in Gal2 and the homologous glucose transporter Hxt2 w...

متن کامل

Putative transmembrane domain 12 of the human organic anion transporter hOAT1 determines transporter stability and maturation efficiency.

Human organic anion transporter hOAT1 plays a critical role in the body disposition of clinically important drugs. In transmembrane segment (TM) 12, residues Tyr-490 and dileucine Leu-503/Leu-504 were identified to be critical for hOAT1 function. Substitution of Tyr-490 with alanine led to a dramatic reduction in protein expression of hOAT1 and its transport activity. The contribution of the si...

متن کامل

Physicochemical features of the HERG channel drug binding site.

Blockade of hERG K(+) channels in the heart is an unintentional side effect of many drugs and can induce cardiac arrhythmia and sudden death. It has become common practice in the past few years to screen compounds for hERG channel activity early during the drug discovery process. Understanding the molecular basis of drug binding to hERG is crucial for the rational design of medications devoid o...

متن کامل

A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue.

Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 471 1  شماره 

صفحات  -

تاریخ انتشار 2000